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Abstract 

Recent  advances  in  nonlinear  dynamics  demonstrate  a  remarkable 
complexity of patterns  outside of equilibrium,  which are derived  from 
simple  basic  laws of physics.  There  has  been  identified  a  class of 
mathematical  models  providing  a variety of such  patterns  in  the form of 
static,  periodic  or  chaotic  attractors.  These  models  appeared to be so 
general that they predict not only physical, but also biological, economical 
and  social patterns of behavior.  Such a phenomenological  reductionism 
may  suggest  that,  on the dynamical level of description,  there is no 
difference  between a solar  system, a swarm of insects,  and a stock  market. 
However,  this  conclusion  is  wrong for a very  simple  reason:  Even 
primitive  living  species  possess  additional  non-Newtonian  properties, 
which are not  included  in  the  laws  of  Newtonian  or  statistical  mechanics. 
These  properties  follow  from  a  privileged  ability of living  species to 
possess  the  self-image  (the  concept  introduced in  mathematical 
psychology). In this paper we  consider the existence of the self-imaie as 
a  postulate to be  added to classical  physics  for  modelling  behavior  of 
living systems.  We  show that self-image  can be incorporated  into  the 
mathematical  formalism  of  nonlinear  dynamics  which evolve in  the 
probability space. We will demonstrate that one of the basic invariants of 
living systems is their  ability to predict future, and that will be associated 
with intelligence. 
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I .  Introduction 

Modelling of life can be performed on many  different  levels of description. In 

this paper we will be concerned with geometrical invariants of biosignatures  representing 

prints of behavioral  patterns.  One of the most  remarkable  patterns in  biology is the 

formation of specie  aggregation  as an evolutionary advantageous  state, in which  members 

derive benefits of protection,  mate  choice,  and  centralized  information,  balanced by the 

costs of limiting  resources.  Consisting of individual  members,  aggregations  nevertheless 

function as an  integrated  whole,  displaying  a  complex set of behaviors not possible at the 

level of the  individual  organism. Aggregation occurs at all sizes from  bacteria  to  whales, 

from  groups of 10 to 10 million. Therefore, in the world of bacteria,  biosignatures  should 

be associated with configuration of aggregations. Operationally.  aggregations fit into two 

classes: Those that self-organize  and those that form in response to external  objectives 

(light,  food).  Depending  upon  that,  they may have  a variety of geometrical  forms 

(milling  in  which  individual  members  circle  about an unoccupied core, polarity without  a 

leader,  distinct  shape  whose  topology varies to suit the tasks,  etc.).  Each of such 

configurations  can be associated with a legend which  explains its evolutionary  advantage 

The most  powerful  modeling tool for analysis of biological patterns  is  based  upon 

fundamental  paradigm of nonlinear  dynamics  called  attractor.  Attractor is  a stable 

dissipative  structure  which  does not depend  (at  least, within a certain basis)  upon  the 

initial  conditions. Due to this property, the whole history of evolution  prior to attraction 

becomes  irrelevant, and that represents  a great advantage for information  processing.  and 

in particular-for pattern recognition. 

The  mathematical  approach to pattern  formation is based upon the theory of 

active  systems  (both natural and  artificial)  which is described by a system of PDE " I .  



where ( 1 1 )  = ( 1 ,  . . .(1,, are state variables, g is a multi-extrema1 function, and ,!$, D,, are 

constants. 

The  properties of the solutions to Eq. (1)  in terms of the type of the attractor 

depend upon a certain  dimensionless control parameter  R  (such  as  Reynolds  or  Reyleigh 

numbers).  This  dependence may lose its uniqueness at certain critical points  when R=R,,, 

and  the solution  becomes linearly  unstable. Because of the richness of postinstability 

structures,  many  different  stable  patterns (both deterministic or chaotic)  may  appear  when 

R=R,,. These structures  include  effects of fluid dynamics, nonlinear diffusion,  chemical 

kinetics,  etc.,  and its solutions can  form  such  patterns  as Bernard cells,  Taylor vortices, 

trigger  and  spiral  waves,  traveling  pulses,  etc.  Surprisingly. the same  equations  are 

exploited  for  simulating  biological patterns  such as transplantation  and  regeneration in 

hydra,  compartment  formation in drosophila,  mammalian  coat  markings,  pigment 

patterns on  mollusk shell  etc.  However,  such an “universality” of Eq. (1) immediately 

disqualifies it  as a tool for the detection of life since it does not suggest  any  mechanisms 

for life-nonlife  discrimination.  Therefore it is not a  coincidence that the  main success in 

simulating  biological  patterns  using Eq. ( 1 )  is  associated with the morphogenesis,  i.e., 

with structures during the growth of an organism  rather than with a  collective  behavior of 

swarms  or  colonies.  Indeed, in contradistinction  to  a set of physical  particles  which 

interact via flows of energies,  a  living  species interact via flows of information  and that is 

not captured by Eq. (1) .  The  flows of information  are  produced  and  processed by a 

signaling  system  whose  complexity is ranging  from  interactions  between  single 

molecular to interactions  between  species in ecological  systems.  and that may  include 

receptors, transducers,  enzymes,  and diffusable  second messengers. etc.’?’ . In order to 

incorporate the signaling  phenomena into the process of patterns formation  on the same 
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level o f  description,  the  following  phenorncnological approach based upo‘n ideas 

proposed in I ‘ I  will be developed. 

2. Reflexive dvnamics 

In contradistinction to physical  systems,  a biological system, from the viewpoint 

of nonlinear  dynamics  can  be  considered  as  a  multi-body  system  (with  “bodies” 

represented by cells)  which is interconnected via information flows. Since  these  flows  as 

well as  responses to them  may be distorted, delayed,  or  incomplete, the motion of each 

cell  becomes  stochastic,  and it can  be  simulated by a controlled  random  walk.  This 

random  walk  is  caused not by an external noise (as in the case of a  physical  particle)  but 

rather by an  internal  effort (a “free  will”) triggered by the signaling  system.  Physically it 

is represented by an ordered  sequence of runs,  pausing and tumbles. 

One of the main  challenges in modelling  living  systems is to distinguish  a  random 

walk of a  physical  origin (for instance,  Brownian  motions)  from  those of a biological 

origin and that will constitute the starting point of the proposed approach. As conjectured 

in  I31 , the biological  random walk  must be nonlinear.  Indeed, any stochastic  Markov 

process  can be described by linear Fokker-Planck  equation (or its discretized version); 

only those  types of processes have been  observed in the inanimate  world.  However, all 

such  processes  always  converge to a stable (ergodic  or  periodic)  state, i.e., to the states of 

a  lower  complexity  and higher entropy. At the same time, the evolution of living systems 

is directed  toward  a  higher level of complexity if complexity is associated with a  number 

of structural variations. The  simplest way to mimic  such ;I tendency is to incorporate  a 

nonlinearity into the  random  walk; then the probability  evolution will attain the features 

o f  the Burgers  equation: the formation and  dissipation of shock waves  initiated by small 

shallow  wave  disturbances. As a  result, the evolution never ”dies”: it  produces new 

different  configurations which are accompanied by increasc o r  decrease o f  entropy  (the 
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dccreasc  takes  place  during  formation of shock  waves, the increase-during  their 

dissipation). In  other  words, the evolution  can be directed  “against the second law of 

thermodynamics” by forming patterns outside of equilibrium. 

In order to elucidate both the physical and the biological aspects of the proposed 

model, let us start with a  one-dimensional  random walk: 

x,+, = x ,  + hSgn[ R + p ] ,  h = Const, z = Const.  (2) 

where  h  and z are the space  (along x) and time steps  respectively; R is a  random  function 

taking  values  from -1 to 1 with  equal  probability, p is a control  parameter  while 

l + l <  1/2. (Physical  implementations of this model  are discussed in the Appendix). 

Eq.  (1)  describes  motion in actual physical  space. But  since  this  motion  is 

irregular, it is  more  convenient to turn to the probability space: 

where f(x,t) is the probability that the moving  particle  occupies the point x at the instant t, 

and the transition probability 

1 
2 

p = - + + ,  O S p S l  

1 
It should be noticed that at the reflecting boundary + = k- 

3 

It is  well known[“.” that if  the system interacts with the external world, i.e., 

p = p ( x ) ,  and therefore, p = p ( x )  
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thc solution t o  Ey. (3) subject to the reflecting boundary  conditions  convcrgcs t o  ;I st;tble 

stochastic  attractor.  However, i f  

,u = , u ( f ) ,  and therefore, p = p ( f )  (5) 

Eq. (3) becomes  nonlinear, and Eq. (2) is coupled with Eq. (3) via the feedback (4). 

From  the  physical  viewpoint,  the  system  (2), (3) can be compared  with  the 

Langevin  equation  which is coupled with the corresponding  Fokker-Planck  equation  such 

that  the  stochastic force is fully defined by the current probability distributions,  while  the 

diffusion  coefficient is  fully defined by the  stochastic force.  The  process  described by 

this  system  is  Markovian  since  future  still  depends  only  upon  present,  but not past. 

However,  now  present  includes  not  only  values of the  state  variable,  but  also its 

probability  distribution,  and that leads to nonlinear evolution of random  walk. 

From the mathematical  viewpoint,  Eq.  (2)  simulates  probabilities  while  Eq. (3) 

manipulates by their values. The  connection  between  these  equations  is the following: if 

Eq.  (2)  is  run  independently  many  times  and a statistical  analysis of these  solutions is 

performed, then the calculated probability will evolve  according to Eq. (3). 

From the biological  viewpoint,  Eqs. (2) and (3) represent  the  same  subject:  a 

simplest  living  specie,  or,  using  terminology  introduced by Leibniz,  a  monad.  Eq. (2) 

simulates  its  motor  dynamics, i.e.,  actual  motion in physical  space,  while Eq. (3) can be 

associated  with  mental  dynamics  describing  information  flows in the probability  space. 

Such  an  interpretation [‘I was  evoked by the  concept of reflection in psychology. 

Reflection is traditionally  understood as the human  ability to take  the  position of an 

observer in relation to one’s  own  thoughts[”]. In other  words, the reflection is a  self- 

awareness  via  the  interaction  with  the  “image of the  self.” I n  terms of the 

phenomenological  formalism  proposed  above,  Eq. (3) represents  the  probabilistic 

“image” of the dynamical  system (I ) .  If this system  “possesses” its own  image, then i t  

can predict, for instance, future expected values of its parameters. and by interacting with 
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rhc itnuge, change the expectations i f  they arc not consisten[ w i t h  (hc ohjc‘ctive. I n  this 

context. Eq. ( 1 )  simulates acting,  and Eq. (2)  simulates  “thinking.”  Their interaction can 

be implemented by incorporating  probabilities, its functions  and  functionals  into  the 

control  parameter p (see Eq. (5)). From the cognitive  viewpoint, p implements the self- 

awareness  associated  with the amount of information  which the system  possesses  about 

its self-image. 

In general Eq. (3) is representable in the  form ( l ) ,  and  therefore, i t  possesses  a 

variety of different  complex  patterns  outside of equilibrium.  However,  in 

contradistinction to Eq. (l), Eq. (3) simulate  patterns in the probability  space,  i.e., in the 

space of the mental dynamics so that the corresponding  actual  motions in physical  space 

are described by nonlinear  random  walks  (2). Due to that, a specie is not locked  up in a 

certain  pattern of behavior: it still  can  perform  a variety of motions,  and  only  the 

statistics of these motions is  constrained by this pattern. 

3. EmerPinP Self-organization. 

We will start the analysis of the coupled motor-mental dynamics with Eqs. (2)  and 

(3) where: 

1.e.. 

Here ( 1  and P are  constant weights, or control parameters. 
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I n  order to illustrate the fundamental  nonlinear  effects, wc will analyzc the 

behavior of special  critical points by assuming that 

5 n  
12 6 

(i = -, p =-- and n 

Then the solution  to Eq. (8) will .consist of two  waves starting from the points x = -e 
and x = e ,  traveling  toward  each  other  with  the  constant  speed v = h / z, and 

transporting  the  values fo(') and f o ( 2 )  , respectively, i.e., 

( ) ( ) ' ' " ' h '  
e f = f , " '  -e+-n + f i 2 )  e- -n  ,n=O 1 - 

where  n  is the number of time-steps. 

At IZ = l /h ,  the waves  confluence into one  solitary  wave at x = 0: 

f = (  
l a t x = O  e 
0 Otherwise h 

at t=nz=--Z 

This  process  represents a discrete version of formation  and  confluence of shock  waves, 

and it is characterized by a decrease of the Shannon  entropy  from 
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However, the solitary  wave ( I   I )  is  not stationary.  Indeed, LIS follows  from Eq. (S),  the 

solution at t = ( n  + l)z splits into two  equal values: 

1/2 at x = ! & h 
0 Otherwise 

The process (13) can  be identified as a  discrete  version of diffusion  during  which  the 

entropy  increases  again  from 

1 
2 

~ ( ~ ~ 2 )  = o to H[(. + I)Z] = -cog, - = 1 (14j 

The  further  evolutionary  steps t 2 ( n  + 2)2  will include  both  diffusion  and wave  effects, 

and therefore, the solution will endlessly  display  more  and more sophisticated  patterns of 

behavior in the probability  space.  The  corresponding  solutions  to  Eq. (7) represent 

samples of the  stochastic  process (8) in the  form of non-linear  random walks in actual 

physical  space. 

Thus, the  solutions  to  coupled  motor-mental  dynamics  simulate  emerging  self- 

organization  which  can  start  spontaneously. At this level of description,  such an  effect is 

triggered by instability  rather  than by a specific  objective. In  other  words,  the  model 

represents  a  “brainless”  life.  However, it serves well to the global  objective of each 

living  system:  the  survival.  Indeed, i t  is a  well  established fact in biology ‘‘I that 

tnarginal  instability  makes  behaviors of living  system mort‘  l’lesible and  therefore, more 

udaptable to changing  environment. 
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Here X ( ' ) , X ( ~ ) , , ~ ~ )  are  the  space  coordinates,  and f =f(s( ' ) , .u( ' ) ,x( ' ) , t )  is the  joint 

probability that the  specie  occupies  the point X ( ' ) , X ( ~ ) , X ( ~ )  at the  instant t. 

As in the  one-dimensional case. here 

pi  = - + p i ,  1 1,2,3 
2 

In particular,  one can  assume that 

It should be noticed  that  the  nonlinear  random  walks (15) in a l l  three  directions  are 

coupled by means of joint probability f via  the control  parameters p ,  . 

From the mathematical  viewpoint, the model of mental dynamics (8) links to the 

Burger's  equation in a sense  that  its  pattern  formation  outside of equlibrium  is  based 

upon the balance  between  dissipation  and  shock  waves. 

I n  general,  this  model  can be enriched with the Belousov-Zhabotinskii  effects by slight 

modification of random walk (7): 
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1 
2 

x ,  + = x, + ”h{ 1 - Sgn[ R + p]}Sgn[  R + 4 

which now includes  the third choice for the specie: to remain a t  rest with the  probability 

1 
q=-+pu, 

2 

The  corresponding  version of Eq. (8) reads: 

If q = q ( f )  and p = p ( f ) ,  one  arrives at the  discretized version of the combined  Burger- 

Belousov-Zhabotinskii  equation  which  possesses a variety of new  complex  patterns 

outside of equilibrium,  and that increases  the  adaptability of species  to  environmental 

changes.  One  should recall  that  Belousov-Zhabotinskii  equation was  already  exploited 

for studying  patterns  formation in biology [‘ I  . However, these patterns  dwell in physical 

space; in contradistinction  to  that,  Eqs. (18) and (20) simulate  patterns in the probability 

space, i.e., in the  space of the  mental  dynamics so that the  corresponding  actual  motions 

in physical  space  are  described by nonlinear  random  walks (7) and ( I S )  respectively. 

Again,  due to that, a  specie is not locked  up in a  certain  pattern of behavior: it still  can 

perform  a  variety of motions,  and  only  the  statistics of these  motions is constrained by 

this  pattern. It should  be  emphasized that such  a  “twist” is based upon  the concept of 

reflection, i.e., the existence of the  self-image. 
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4. Feedback from expected future. 

The feedback (6) from mental to motor  dynamics was expressed via the current 

probability  distribution f = f ( x , t ) .  In general,  one  can  include in (6) memories 

, f ’  = f ( s , t  - 2 )  and  non-local  effects f = J’(x k h,t). In all  these  cases,  the  mental 

dynamics  evolves independently upon the motor  dynamics.  This  property  allows  living 

systems  to  predict  future by running  the  self-image  faster than real time,  and  then correct 

(if  necessary)  the  motor  dynamics (7) via the  feedback  from  expected  future.  Actually 

such a privilege of living  systems  represents  the  basic  component of the  concept of 

intelligence. 

Let us now  show  how this  phenomenon  can  be  implemented in the model of 

motor-mental  dynamics. For this purpose  one  has to modify the feedback (6) as  follows: 

1 
2 

p’ = Sbl?(a%l)+r..r + p’), p’ = p” -; a, p = Corzst (21) 

where .f;,,+, is found  from Eq. (8). 

It should  be  emphasized that JI,+, is the  expected  distribution  for t > to since it  is 

not yet effected  by  the  new  feedback (21). The real future  distribution AI:+, i s  

found from the modified  mental  dynamics: 

in which 1.” is defined by Eq. (21). Eq. (22) can be rewritten in the explicit  form for the 

case  when  starting from t,, + 2, the  feedback (6) was replaced by the feedback (2 1 ): 
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The  process  described  by  Eq.  (23)  is still  Markovian  despite the fact that present here is 

correlated  with  future:  indeed, as was  demonstrated  above, the (expected)  future  is 

uniquely  defined  by  present  (see  Eq. (8)). However, the process (23) is  more 

sophisticated  than  those  described  by  Eq. (8) and  it  can be useful for systems  with 

objective  since  then the  feedback  from  expected  future  plays the role of a  gradient (in the 

probabilistic  space)  which  guides  the  evolution of the motor  dynamics. 

The  feedback (21) can be presented in a  more  general form: 

7 .  1 1 p '=Sin-F j,,,,,, , n=1,2 . . .  etc., p = p ' - -  
2 

where F is an arbitrary  function,  and A,,+,, is an expected  distribution at t = to + nz found 

from the equation: 

5. Svstems with global objective. 

As shown in the  previous  sections, the solutions  to Eq. (8). or to its  generalized 

versions,  Eqs.  (15),  (22)  and  (25)  can  simulate  emerging  temporary  self-organization 

which is characterized by a decrease of the Shannon  entropy  (see  Eq.  (12)). In this 

section  we will discuss a link between this phenomenon  and global objectives of a  living 

system. 
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E = e"" (26) 
I t  

the continuous  representation of Eqs. (8), (15). (22) and (25) contains the derivatives of 

all orders: 

while  all  the  coefficients  depend  upon f and the control  parameters d,p,a',p', etc (see 

Eqs. (6), (17), (21), and (24)). 

Therefore, the solutions  to  Eq.  (27) may include the effects of the Burger's 

equation ['I (A, = I, B2 = f ,  B3= Const, the rest A;, Bl= 0 )  the Korteweg-deVries 

equationL8 ' (Al = 1, B2 = f ,  B4 = 1, the rest AiBj = 0) and  the  Belousov-Zhabotinskii 

equation ' I J  (Al = 1. Bl # 0, B, = Const the rest A,,B, = 0) which  are,  respectively: 

formation  and  diffusion of shock waves, formation of trains of solutions,  and  formation 

of trigger  waves. The transitions from one pattern to another formally  can be achieved by 

an appropriate  change of the control parameters a,P,etc. In order to illustrate  that, let us 

turn to the matrix  representation of Eq. (3). 

Here the vector n = nl,n, ...x, represents the probability distribution f ( x , t )  at the points 

x =  l,2, . . .  N so that 
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N 

x , ( r ) = j . ( . v , , f ) ,  i =  1,2 . . . .  N ,  C n ,  = I 
, = I  

(29) 

For the reflective  boundary conditions at x= l  and x=N, the matrix P has the following 

Sorms : 

P =  

1 0 0 . . . . . .  0 0 0' 

0 1 - p  p 0 - . *  0 0 0  
0 1 - p  0 p . . .  0 0 0  

P O  
1 - P  P 0 

0 1 )  

. . . . . . . . . . . . . . . . . . . . . . . .  
0 0  . . . . . . . . . . . . .  
0 0  . . . . . . . . .  
0 0  . . . . . . . . . . . .  

If 

p=Const ( 3  1) 

Eq. (25) has a closed  form  solution ['I which tends to a stationary distribution for  large 

number of steps 

n>> N (32) 

k - I  

n,(n>>N)+ h - l  [L) 
( & ) N - l  1 - P  

and 

for n>>N 

(33) 

(34) 
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Wc will pose IIOCV the following  problcm: storc II W I  o f  111 st;1tionary stochastic proccsses 

given by vectors of their probability invariants 

(These  invariants can be represented,  for  instance, by expectation E, variance and  higher 

moments) in such  a way that when  presented  with any  of the  process n out of the  set of 

M processes 

6 ( / )  

&i) = k; j ) ,$ )  . . .  n,,, * ( j )  , j = 1,2 ,... M 

Eq. (28) converges to one of the stochastic  processes (35). 

The  performance 

X + I  (37) 

represents  correspondence  between  two  classes of patterns,  i.e.,  a  hetero-associative 

memory  on a  high  level  of  abstraction.  Indeed,  each  process in (37)  stores  an  infinite 

number of different  pattern of behaviors  which,  however,  are  characterized by the  same 

sequence  of  invariants (35) and (36), respectively thereby representing  a  decision making 

strategy.  Considering a living  system as a  decision-maker,  one  can  give  the  following 

interpretation of the mapping (37): 

Classical  artificial  intelligence  as  well as artificial neural networks  are  effective 

in a  deterministic  and  repetitive  world, but faced with ~rncertainties  and  unpredictabilities, 

both of them fa i l .  At the same  time, many natural and  social phenomena  exhibit  some 

& g e e  of regularity only on a higher level of abstraction, i.e., i n  terms of some  invariants. 
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I ; o r  instance, each particular  realization o f  a  stochastic procesh can bc unpredictable i n  

dctails, but the whole  ensemble of  these realizations  i.e.,  “the big picture”  preserves  the 

probability invariants  (expectation,  moments,  information,  etc.) and therefore,  predictable 

in terms of behavior “in general.” 

Hence, if the  strategy of the decision-maker is characterized by a pattern I t ( ‘ )  from 

( 3 6 ) ,  and  starting  from t=O, the  external  information  becomes  unavailable,  he  should 

change  its strategy  from  pattern It“’ to the corresponding pattern from ( 3 3 ,  and that can 

be  associated  with a decision  based upon “common  sense.” It is  implied  that  the 

attracting  strategies I are  sufficiently  “safe,”  i.e.,  they  minimize  the  risk  taken  by  the 

decision-maker in case of  an uncertain  external  world. 

We will illustrate  the  approach by the  simplest  case when there  are  m  attracting 

stochastic  processes  stored,  and  each of them is characterized by only  one  invariant-the 

expectation E(‘) ,  i = 1,2,. . .m, while the rest invariants  are  not  specified. 

The first step  in the implementation of the  mapping  (37) is to find  an  appropriate 

feedback.  Departing  from  Eqs. (21) and (24), we  will  seek the nonlinear  feedback in the 

form: 

n, =o,  n, = o  (39) 

Eq. (38) introduces N-2 weights a,(i = 1,2, . . .  N -  2) to implement  the  mapping  (37), 

while  Eq. (39)  enforces reflecting boundaries. 

Substituting Eq. (38) into  Eq.  (33)  one  obtains: 

17 



One  should notice  that Eq. (33) (which  was  derived  under  asspumption p=Const) is still 

valid for  the  case (38) since  starting  with  n>>N, the stochastic  process is supposed to be 

stationary  (provided  by an appropriate  choice of the  weights a,),  and  therefore 

xi = Const in Eq. (38) 

The  existence of m stationary  stochastic  processes  with  expectations 

E("(i  = 1,2, . . .  172)  requires that N-2  weight  coefficients a; satisfy  the  following m=N-2 

equations: 

/ N  1 

Here E"' are  expectations of the  stochastic  processes (35) to be stored,  which  are  given 

and x;'' are  expectations of the stochastic  processes (36) characterizing  the  original  states 

of the  system  (which  are  also  given).  In  order to solve  this  system in a dynamical  way, 

one can  apply  the  simplest  version of the  back-propagation  strategy by minimizing  the 

"energy": 

tanh-' i A-i 

Cain; ' )  +a,  - I 
; = I  :I -+ min (42) 
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i.c., by using the following recurrent relationships: 

where 

Here a‘”’, and E; are  the jr” approximations of the corresponding  values of a and E .  

It should  be  recalled  that Eqs. (43) represent a gradient  dynamical  system,  and 

therefore,  the  recurrent  procedure in (43)  always  converges.  However.  since  the 

nonlinearity of Eq. (42) (with respect to ai )  is not quadratic, the solution to Eq. (43) can 

be trapped in a local  minima.  Therefore,  the  recurrent  procedure  should  be  repeated 

several  times  starting  from  different initial values of a“’, and then the  lowest minima of 

E has  to be chosen as the solution. 

Thus, the dynamical  system (2), (3) represented in the equivalent  form: 

n(t + 2 )  = n(t)P (46) 

where the matrix P is expressed by Eq. (30), and 
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I p =  p" 
2 

possesses the following property: 

( I )  

If the initial  value x,," i n  Eq.  (45) is drawn  from ;t stochastic  process n (see 

Eqs. (36)), then the  solution to Eqs.  (45)  and  (46) will approach  (for  n>>N) a new 

stochastic process which  is  characterized by a prescribed expectation E'" (see Eq. (32)). 

This  attracting  stochastic  process  can be associated  with the global  objective of the 

underlying  living  system. 

We will  now make  three  comments  concerning the mapping ( 3 7 )  introduced 

above. 

Firstly,  strictly  speaking not all of the stochastic  processes  from  Eq. ( 3 5 )  are  true 

attractors: some of them  can be repellers.  Indeed, the corresponding  weizhts a, were 

found  from statical  rather than dynamical  conditions  (see  Eqs. (4 l ) ) ,  and  therefore, the 

stability of these stochastic  processes were not established. The situation  here is similar 

to those in neural nets  where  some of the equilibrium (or fixed)  points are stable,  and 

some of them are not. In terms of Markov  chains  (see Eq. (46)), the possibility that some 

of the stochastic  processes (35) are  unstable  (and  therefore, wiIl never be approached) 

follows  from the nonlinearity (47). It should be recalled that classical  Markov chains are 

linear,  and all  the processes  with  reflecting  boundaries  coverge to stable  stochastic 

processes. 

Secondly,  Eqs. (33), (34),(40) etc.,  include the condition that n>>N, i.e., that the 

number of time-steps is significantly  larger than the number of space-steps N.  Actually 

this condition  can be specified if one  evokes  a well known result from the Markov  chain 

theoryi5' which  quantifies Eq. (33):  
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where 

L J L  J 
- r  

As IZ + 00, Eq. (49) tends to Eq. (33) ,  while the second  term in Eq. (49) allows  one to 
evaluate n such that this  term  can be ignored in comparison to the first term. 

Eq. (50) (as  well  as Eq. ( 3 3 ) )  was  derived  under  assumption  that  p=Const. 
However,  it  is  still  valid  for  the  case (38)  as long as the second  term in Eq. (49) can  be 
ignored  since  then  the  stochastic  process  is  stationary,  and  therefore n, = Const in Eq. 

(38). Obviously,  this  conclusion  is true only if the stochastic  process in (35)  is  stable. 
Thirdly, if the  attracting  stochastic  processes in Eq. (37) must be specified  not 

only by the  expectations (35) ,  but  also by higher  moments. the additional (to Eq. (41)) 
constraints 

x k n T = M , ! " ,  ( r = 2 , 3  , . . .  T ~ ) ,  i = l , 2  , . . .  r1z 
; = I  

should  be  imposed  upon  the  weights a,. 

Here Mj" are  the  specified  moments  for the i'" stochastic  process, nj are  the 

probabilities  expressed  by Eq. (40), and m is the number  of  the  attracting  stochastic 
processes,  while 

N - 2  
m = - 

r 
The  number of the  prescribed  moments m can be increased i f  the  feedback (38) is 
generalized to the following  form: 

f N - 2  N - 2  

i ,  j = 2  

6. Svstems with hidden identitv 
A living  system may  have a global  objective  which is different  from  those 

described in the previous  section.  Indeed, let  us consider a biological or  social  system 
which is in the state of a prey-predator  game.  Then it  m a y  bc beneficial  for  such a 
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N N 

H = - z n ; t o ~ n ,  + max, z n i  = 1 ,  etc. 

But a living system  can  do better  than that: it  can  mislead its adversaries by hiding  its 

identity. 

The  simplest  way  to do that  is to make  the  feedback  from  mental to motor 

dynamics  chaotic.  For  that  purpose,  let us turn to Eq. (2) and  rewrite it  in the  following 

form: 

x,,, = x ,  + h  Sgn R + - p + -  p -- [ ; x :,I 
where  the  bias 

Eq. (55) represents  the  deterministic  components of the  non-linear  feedback, and  Eq. (56) 

- its chaotic  component.  Indeed,  Eq. (56) is known  as a logistic  map  which leads to 

chaotic  time  series. 

Now the transition  probability in Eq. (3), with reference to Eq.  (4) becomes: 
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features,  and  therefore, the probability distribution j ' ( l , .v )  becornes unpredictable 

Thus, the motor dynamics (54) is now run by the mental dynamics 

via the feedback (57) which  includes the nonlinear deterministic  component  defined via 

the  bias (55) and  the chaotic  component  defined by the bias (56). The last component 

which  implement the  hiding of the identity by making  the  probability  distribution f ( x , t )  

unpredictable  can be associated with a deception dynamics. 

7. Svstems with local obiective 

In many real life situations, a living  system  does not know, or cannot  formulate its 

global  objective.  Instead, it can  formulate local, i.e., a one-time-step-ahead  objective. 

We will  start with the  simplest  case: a predator-prey  pursuit. We will assume  that  both 

the  predator  and  prey  possess not only  the  image of the self. but the image of the 

adversary  as  well. In terms of the three-dimensional model ( 15). ( 16). The  pursuit  can be 

formulated as follows: 
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i x . ,  l o  consider the adversary as an  extreme  opposite to  the self. 

At  this  point, Eqs. (59), (60) and (621, (63) are  coupled  only i n  pairs,  while  Eqs. 

(6 I )  and (64) are decoupled. 

Now we will  introduce  the  objectives  of the pursuit: the predator  objective is to 

minimize  the  distance  between  the prey  and  himself during  the  next I Z  steps,  and  the 

prey’s  objective is to  maximize the same  distance. 

The distance  after n steps  is  expressed as: 

k=O 

The  only way to optimize  it  is  to  manipulate by the weights al, and PI in Eqs. (65) and 

(66)  using the strategy of  the  gradient  descent  approach  (see  Eqs. (42)  and  (43)). 

However,  here  this  strategy  can not be applied in a  direct way since  neither  the  predator, 

nor  the  prey know their  actual  future  positions x ( ; )  and y ( I ) .  Therefore,  these  positions 

have  to be predicted  based  upon  their  images.  The  images  can  be  represented by 

expectations,  modes  or  medians of  the  corresponding  probability  distributions.  For 

instance, in case of expectations, the distance (68) is replaced by: 

where 

k=O i=l 

Then the predator’s and the prey’s  images of the same  objective  are,  respectively: 

(70) 
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These  images  are  different  since  neither the predator,  nor  the prey knows  the  actual 

probabilities f 2 )  and f ' "  of their  adversasries, and they  replace  them by the  images 

f " )  and j " ) ,  respectively  (see  Eqs. (65), (66) and (67). Now the  strategy of the 

predator  follows  from  the  gradient  descent  minimization: 

(73)  

Similarly.  the  strategy of  the prey follows  from the gradient  descent  maximization 

Thus, prior to each  move, the predator  and prey find  the  optimal  weights a, and PI from 

Eqs. (73)  - (76), plug  them  into Eqs. (59) - (64) via Eq. (65), and  then  make  the  next 

("optimal") step. 

There  are  four  comments to be made concerning the model  of pursuit. First of a l l  

the system (59) - (64) is  now fully interconnected via the ob-jectives (7 1 ), (72) by means 
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01. Ells. ( 7 3 )  - ( 7 6 )  and (65), (66). In particular, that nlcans that  thc stochastic proccss 

( 0 0 )  and (63) are  correlated. But it does not necessarily mcan that there exists ;I joint 

probability function , T ( { x } , { y } )  for which f “ ’  cuzd , f 2 )  are the conditional  probabilities. 

Indeed, as shown in ‘’.‘)’ ’the stochastic  processes  (60)  and (61) are  entangled i n  a sense 

that there is no such a  transformation of coordinates { x } , { y }  which  would  decouple 

them, 

Secondly,  each  specie  exploits  the  probabilistic  images of the  self  and its 

adversary to predict  future  positions,  and  to  make  the  best  available  move,  and  this 

remarkable  property  which  is a privilege of living  systems,  can be associated  with 

intelligence. 

Thirdly,  success of the pursuit  depends  upon  the  degree of superiority of the 

predators’  mental  capacity  over  those  of  the prey if the  mental  capacity is measured  by 

the  speed of learning, i.e., by finding  the  correct values of  the weights a and p from  the 

gradient  descent (73), (74). 

Fourthly, in the  pursuit  model,  each  specie  can  demonstrate  intelligence not only 

via  the correct  prediction of the  future  moves, but also by  making  misleading  moves 

based  upon  desception  dynamics  (56) if the  feedbacks (65) and (66) are  modified  to  the 

form  (57). 

Finally, as  follows  from that model,  the  successful  pursuit  can be associated  with  the 

catching of a prey by the  predator,  and  that  depends upon how well the  predator  predicts 

the  prey’s  moves.  The  power  to  predict  starts with Eq. (67) when the predator  selects  the 

transition  probabilities  for  his  image  of  the prey. The ability  to  make  this simple  and 

universal  choice  mimics  the so called  innate  properties  conferred by all  those  elements 

with  which the specie  was  born.  However, the choice (67), in general, may not be good 

enough: i t  does not include the specific  characteristic of the prey. That is why  the very 

first  “accluaintance”  between  the  adversaries may end in ;I t’uilure on the part of the 
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will serve  as a measure of the mismatch  between the image and reality.  Based upon this 

difference,  the  predator  can  correct his prey’s  image by appropriate change of 2 j j  in Eq. 

(67). Actually  he  should  minimize the difference (77) as a function of 5, and bj where: 

(1 I = Sin’( 2ii7(?) + D i ) ,  i = 1,2,3 (78) 

I.G., 

It should be noted that the  predator  cannot  rerun the actual trajectory after  the  pursuit  has 

been ended: he can  change lAEl only by rerunning  the  image of this  trajectory,  i.e.,  by 

simulating  the  solutions  to  Eqs. (59) - (61). 

Eventually: 

eim & ; j )  = ai, (in2 p y  = p, 
1-i- j” 

i.e., the  predator’s  image of  the prey coincides with the  prey’s self image. 

Thus, if  Eq.  (67) is associated  with  the  innate  properties,  Eq. (130) can be 

associated with an  acquired,  or learned properties. 
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where  the weights 6 and p are adjusted by means of minimizing the difference 

8. Self-reproduction 

Self-reproduction is one of the privileges of living  systems. In order to simulate it 

within the framework of our  phenomenological  formalism, we have  to  make the 

following  assumption: all the species of the  same  genotype have the same probabilistic 

invariants of their  behaviors. In other words. their trajectories  are different  samples of 

the same  stochastic  process, i.e.they are different  on  the level of deterministic  details, 

but are identical on  the  level of statistics.  Then  the  self-production  process  can  be 

simulated by throwing  into the “battlefield”  new  and  new  samples of the same stochastic 

process  (for instance, the one  described by Eq. (8)). The rate of reproduction  has to be 

governed by the logistic  equation: 

N;+,  = N ,  - y N j  (1 - N )  (84) 

where N is the population  density, y is the coefficient  describing  effects of food 

availability  and death rate. 

Thus,  again we arrive at two  different types of descriptions: the global  picture is 

still expressed by Eq. (8), i.e., by the mental dynamics in the probability space; the local 
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picture, o r  motor  dynamics  represented by ;I set o f  nonl inear  rmclom  walks (7) whose 

density (in physical space) is expressed by Eq. (84). 

If several  genotypes  occupy the same  physical  space then the global picture (in 

the mental  space) is represented by Eqs. (60), (611, (63) and (64), while the motor 

dynamics is described by a two  set of random  walks (59) and (62) whose  densities  are 

expressed by the corresponding versions of Eq. (84). 

9. Collective performance 

In  this  section  we will  briefly describe  collective  phenomena  In  the  proposed 

model  which  combine  the  paradigms  discussed  above  (on the level of individual  or  pairs 

of  species)  with  the effects of swarms  of species.  In  other  words,  we  will depart  from  a 

single  monad  and  move to a  system of interacting  (collaborating  or  competing)  monads 

within the framework of dynamics of intelligent systems. 

a. Collaboration. Suppose that  there are  several  different, but “friendly”  swarms of 

species  having the probability distributions 

f )  =.f ,({. ,} ,{~i},{z, j} , t); j=1,2 ,... s 
where { x , ~ } ,  {y,} and {zi> are sets of space  coordinates occupied by the species of the j‘” 

swarm. 

We will postulate that within the framework of our  formalism, the “friendliness” 

is equivalent to the existence of the joint probability 

J’ = f ( { % } ? .  .{Z.J) 

so that f ;  in Eq. (84) are interpreted as the conditional probabilities: 

As shown in “ ) ,  that imposes upon J )  the following constraints 
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I f  these constraints are  satisfied, one can describe the joint  evolution of all the S swarms 

by only one  equation: 

which  represents  the  evolution of the image of the whole  set of species in the  probability 

space.  This  evolution as a collective brain controls motor  dynamics of each specie: 

( 0  = x ,  ( i )  +h;Sgn(R+yi ) ,  j = 1...3 (90) 

in a  centralized  way. 

The  simplest version of the dependence p j ( f )  is 

1 
I 2  

p ,  =Si , l” ja ; f+p i ) ,  p .  = p  ” (91) 

which is similar to Eq. (6) for a single  specie.  However, here the coefficients G, and p ,  
may depend  upon  the population density N,  i.e., 

a; = a,,(N), P, = P , ( N )  (92) 

At the same time, the coefficient y in Eq. (84) is likely to depend  upon the probability f ,  

I.e., 

Y = Y ( . f )  (93) 

As a result, Eqs. (92) and (93) couple the motor-mental  dynamics (90),(91) with  the 

dynamics of the population density (84). 

Hence, in addition to multi-dimensional version of the nonlinear  effects  discussed 

for ;I single specie,  such as the spontaneous  self-organization,  one  can expect  phenomena 
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associated with many-body problem: aggregation. forn1Lltion 01‘ I I C W  dlianccs.  explosions 

01’  the population densities,  etc. 

h. Cowpetiliorz.. Suppose the swarms  described by the probabililies ( S S )  are “hostile.” 

In terms of our  formalism it means that thc constraints (88) ;we n o t  satisfied.  and 

therefore, a joint  probability (86) does not exist. In other  words, the hostile swarms 

cannot be controlled by a unified  “collective  brain”  as in the previous  case.  However 

they can be entangled in a more  sophisticated  way.  Indeed, here instead of Eq (86), one 

arrives at a set of S coupled  equations: 

where 

Each of these  equations  represent the evolution of the image of the corresponding  swarm; 

however, these evolutions are coupled via Eqs. (95). 

In  order  to  emphasize  the  fundamental  difference betnwn the unified evolution 

(89), i.e., the collective  brain,  and the coupled  evolutions (94). one  has to recall that in 

physics  the  violation of compatibility  conditions  are L I S L I ~ I I ~  associated  with 

fundamentally  new  concepts  or a new  physical  phenomenon.  For  instance. 

incompatibility of velocities in a fluid, Le., non-existence of a velocity potential: 

introduces  vorticity  and  rotational flows. In the same way, the violations of Eqs. (88), 

Le., non-existence of a  joint probability (89), leads to coupled  evolution of the stochastic 

processes (941, while the degree of the incompatibility 
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can bc interpreted as a somc sort of “vorticity” in the probability s p c c .  

As mentioned  earlier, the “vorticity”  makes  impossible to find  such  a 

transformation of the coordinates s i  which  would decouple the stochastic processes (94), 

i.e., these processes  are  entangled. 

Thus, the “vorticity” (97) brings a new dimension in the complexity of the motor- 

mental  dynamics  (89,90): i t  makes the control of the motor  dynamics of each  specie less 

centralized and more distributed. In addition to that, as  shown in , the  information 

capacity of a  set of entangled  stochastic  processes (94) is greater  than  that of the 

processes having the joint probability (89). 

In the same way as it was  described  for  a  simple  specie, the evolutions  (85)  and (90) 

can be driven  not  only by nonlinear  instability, but by the ob-jective as  well,  and that 

includes learning, self-nonself  discrimination  (on the level of s\varms). calibration.  etc. 

10. Minimum-free-will princiole 

In our  previous  discussion,  for the proof of concept, the nonlinear  function p ( f )  

has been  chosen in the simplest  form (6) or (38). However, the only restriction  imposed 

upon this  function is the condition 

O l p l l .  

Therefore, in general , it can be sought in the form: 

where q ( f )  is  an arbitrary function or  a functional of f .  

If this function is parametrized, for instance, as 
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corrcsponding  functional  (see Eqs. (4 l), or (73)-(76). 

But  suppose that there are  several  different  ways in which the same  objective can 

be achieved, i.e., the function (100) includes  a set of weights ,!3 

cp = C p ( L  a7 P )  (101) 

which do not  affect  the  objective.  How  the  specie  should solve such a redundancy 

problem? 

Let us assume that the physical (i.e., the passive)  component of the specie  motion 

is a  symmetric  random  walk  which  is a discretized version of the Brownian  motion. 

Then the transitional probability p in Eq. (99) can  be  decomposed  as: 

(102) 

In this form, the nonlinear  component of p,  i.e.,  the  function @ ( f )  represents  the 

deviation from the passive  motion,  i.e., the “free will.” 

Now we will make the following  statement: if a  specie can  achieve  its  objective 

by several  different ways, i t  will choose  one  which  minimizes the  deviation  from  the 

passive  motion, Le., it will minimize its free will component. In other  words, if a specie 

is offered  a  “free  ride”  by  physics, it should  take it. This  minimum-free-will  principle 

can be associated  with  the  Gauss  minimum  constraints  principle  according  to  which  the 

motion  of  a  constrained  system  minimizes  the  deviation  from  the  corresponding  free 

motion.  However, in contradistinction to that, the  minimum-free-will  principle  is  not 

required by physics, but i t  is rather  imposed by biology.  Indeed, a “crazy”  specie  can 

move  “against”  the  minimum-free-will  principle, but it  will waste its energy  and 

“intellectual”  effort,  and as a  result, its chances  for  survival will be decreased. 

A naturd measure of deviation  from the passive motion is the difference: 

l M I  = I 4  - HI (103) 



where Hi,  and H are thc entropies of  the passive :und thc ; ~ l u a l  motions. respectivcly. 

principle: i f  the specie  objective is defined in the time interval 0 5 t 5 T ,  its motion will 

minimize  the free-will measure 
r 

t=# r 

sub-ject to the  objective.  In  other  words, if the weights a in  Ecl. (84) are  defined by the 

objective, then the  redundant  weights p'  must be found  from the condition: 

One  should  recall  that 

r=O 

and f is found  from Eq. (2)  where p = Sirz ' [q~(f ' ,P) ]  

1 I .  Reflexive Chains 

As follows  from the previous  sections,  the  fundamental  difference  between a 

physical and an  intelligent  system is the  possession of the self-image  by  the  latter. In 

section 7 we  have  introduced a set  of  images:  the  self-image  and  the  image  of  the 

adversary.  In  this  section  we  will  describe a general  picture of  the world of images,  and 

in particular,  the  complexity of its reflexive  structures. 

The notion of reflexive  structures  was  introduced in mathematical  psychology ' ' ' I  

based upon an  axiomatically  defined  formalism. In our approach. the same  phenomenon 

is represented  as  an  interaction  between a stochastic process (describing  the  motor 

dynamics,  i.e.,  the  actual  reality)  and its own  probability  evolution  (describing  the  mental 

dynamics,  i.e.,  the  self-image);  no  additional  postulates arc required.  However,  the 

feedback  which  controls the motor  dynamics,  includes a set o f  the control  parameters a; 
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(NX. t'or cxm1plc, Eq. (38)) which are  supposed t o  be found from the  ol>.jcctivc (scc Eqs. 

(-42) and (43)). And only when the  same  objective  can be achieved by several different 

combinations of the  control  parameters,  i.e.,  when  these  parameters  are  redundant,  the 

minimun~-free-will principle  has to be applied. 

Let us consider a set of n interacting  monads.  Each monad is characterized by its 

motor  coordinates x j ( t )  and  the  self-image  coordinates f ,  ( f . z , )  , j  = I , ? , .  . . I Z .  Such a 

state of the  system  we will associate with the first level of reflexion. On the  second  level 

of reflection,  each  monad  has  images of the  rest of monads,  i.e., . f;k(t,x,), k f j .  On the 

third  level of reflexion,  each  monad  has  images of images of the  rest  monads of 

themselves  as well as of others,  i.e., f jkp ( t , xk , . r , s ) ,  k f j ,  etc. 

It can easily  be verified that the  number of images  on the first level of reflexion 

e ,  = n  

on the  second  level  of  reflexion 

t, = n(n - 1) = n(t, - 1) etc. 

Finally 

c,,, = n(!,?*-, - 1 )  = 
= n + n(n - I )  + n[n(n - I )  - I ]  + .  . .etc. 0~ nIrr 

where m is the  level of reflexion. 

Thus, the number of images  characterizing the state of  an n-monad  system  rows 

polynomially as a function of n, and  exponentially  as a function of  m. 

For a rn-level of reflexion,  the  behavior of each  monad is described by a system 

of -+ 1 equations  corresponding to the  variables ~ ~ , J ; , . f ; ~ . , f ; ~ , ~ , . ~ ; ~ , ~ ~ ,  etc. The first li 
n 

group of variables, x , ,  characterizing the motor  dynamics,  are  governed by the  equations 

o f  the type (59); the  second  group of variables, j ; ,  characterizing  the dynamics of the 

sell-image,  are  governed by the equations of  the type (60); the third. group of variables, 
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equations of the type (61), etc. All these equations are coupled via [he comtnon  objective 

o f  the type (68) which  adds  another  set of dynamical  equations of the type of (73)-(76) 

governing the adjustments of the control parameters a,,/3,, etc. 

As  follows  from Eq. (106), the world of images is never complete:  each  new level 

of reflexation  brings  in an additional  set of images with the corresponding  number of the 

governing  dynamical  equations,  and that leads to deeper  and  deeper  interactions  between 

monads.  It may happen that some  monads  have  longer  chains of images  than  others; 

obviously, in case of competition, these monads  can better  predict  the  evolution of the 

whole  system,  and that  will give  them  advantage  over  those  with  the  shorter  chains of 

images. 

Let us assume  now that the number of the levels of reflexion tends to infinity,  i.e., 

n z  -+ 00, and, as follows  from  Eq. (106), the number of interactins  images I?,,, as  well as 

the number of the  correspondings  governing  equations,  grow  exponentially.  Does the 

system’s  behavior  tend to some  limit pattern such that starting with some larger  m it  does 

not change any more? Even without rigorous mathematical analysis i t  is obvious that the 

answer to this  question  depends  upon the structure of the objective.  Indeed, suppose that 

the system  consists  of n monads,  and  let  us  start  with the case  when  they  are 

collaborating.  Then their  objective  can be formulated in terms of minimization of some 

functional E of the  coordinates x j ( t ) , f , ( t , x , )  etc.,  through the control  parameters a, 

under the  assumption that this functional  has  a unique global  minimum.  Since  each new 

level m of reflexion brings in a new set of the control  parameters,  obviously 

E,,,,, I E,,, , and E, + min  at rn + - (107) 
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This mems that the system is attracted to ;I certain pattern o f  behavior  when  the  numher 

01' lhc rcl'lexion lcvcls is sufficiently large,  and  therefore, its complexity is limited. 

I F  the functional E has several local minima, then each of them can be approached 

with  some  probability,  i.e., the system may have  several  different limit patterns of 

behavior if r r z  + 00. 

Finally, for competing  monads, the functional E may  have only saddle  points 

when  a  minimum with respect to one  set of coordinates  corresponds to a  maximum  with 

respect to another. In this  situation, the system  does not have any stable limit  behavior, 

and it will  endlessly  increase  its  complexity  as m + 03. But  does  such an unstable limit 

behavior  have  some stable invariants at m + 00 in the same way as chaos  does?  At 

this  stage  we  do not have an answer to that question. 

12. Discussion and conclusion 

There  were  many  attempts  to  describe  the.  behavior of living  systems by the 

mathematical  formalism of classical  physics  which  includes  Newtonian  mechanics, 

thermodynamics  and statistical  mechanics, [ ' I  . Not withstanding  indisputable  success of 

this approach,  we will  concentrate  our  attention to its  limitations. In order to illustrate 

that, we will start our  discussion with the  following  example:  consider  a  small  physical 

particle in a state of random migration due to thermal  energy,  and  compare  its  diffusion, 

or  physical  random  walk, with a  biological  random  walk  performed by a  wild-type 

bacterium  which  can  be  associated  with the simplest  biological  particle, i.e., a  monad. 

The  fundamental  difference  between  these  two  types of motions  can be detected in the 

probability  space:  the  probability  evolution of the  physical particle (which  can be 

associated with the  Fokker-Planck  equation) is always  linear,  and it has only one attractor 

- a stationary  stochastic process where the motion is trapped. On the contrary,  a typical 

probability  evolution of a biological  particle is nonlinear: i t  can have many  different 
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a(tractors, but cvcntually  each atlractor can be departed without any  ”hclp” f r o m  outsicic. 

I-Iowcver, such  a  behavior  violates the second law of thermodynamics unless there is 

another  “hidden”  object which  interacts with the monad. In order to find this object,  one 

has to turn to mathematical  psychology  which  postulates that a  human  possesses a self- 

image  and  interacts with it. (Actually the concept of self-image  was  introduced by Kant, 

and  recently  Caltech  reported  a  discovery of specific parts of a  human brain responsible 

for the self-awareness,  Caltech  News,  1999). In terms of the mathematical  formalism of 

classical  physics,  the  self-image  can be represented by the probability  evolution  (mental 

dynamics)  associated  with  the  corresponding  random  walk  (motor  dynamics).  Then  the 

interaction  between the monad  and  its  self-image  is  implemented by the feedback  from 

mental to motor  dynamics,  and that makes the probability evolution  nonlinear.  Actually 

the deviation  from  linear  evolution  expresses the “free-will” of the monad.  From the 

physical  viewpoint, the self-image  is an external  object, and that reconciles  biological 

random  walk with the second law of thermodynamics. (The need for a reconcilation  was 

expressed by E. Schrodinger in his book  “what is life?”, 1944). 

Thus, i t  has  been  proposed that in order to capture  dynamical  invariants  of 

behavior of living  system,  classical  physics  should be equipped  with an additional 

postulate,  namely, that each  living  system  possesses the self-image. This self image  can 

be incorporated  into  the  mathematical  formalism of nonlinear  dynamic  which  evolve in 

the probability  space.  The  only  difference  between the classical and the probabilistic 

nonlinear  dynamics  is in additional  constraints  imposed  upon  the  latter by the 

normalization  conditions  followed  from the definition of probability.  Actually  the self- 

image  postulate  can  serve  as  a  definition of living  systems  characterized by purposeful 

movements. 

It  has been demonstrated that within the formalism  introduced  above,  a living 

system  can predict future in terms of probabilities due t o  smoothness of evolution in the 
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probability  space  (such a smoothness does not exist i n  aclual space  because of 

irregularities of a  random  walk).  This ability which incrcases chanccs for survival  can be 

considered  as  a basic component of intelligence. 

The  proposed model of the simplest  biological  particle,  monad,  consists of a 

generator of stochastic  processes  which  represents  the  motor  dynamics in the form  of 

nonlinear  random  walks, and a  simulator of the nonlinear version of the Fokker-Planck 

equation which represents the mental  dynamics.  Both  components  can be implemented 

by physical  hardware  (neural  networks,  cellular  automation,  etc.),  and  thereby,  one  can 

introduce  artificial  intelligent  systems  which have the  same  phenomenology  as  natural 

ones. 

There  have been  shown that coupled  motor-mental  dynamics can simulate  such 

processes as emerging self-organization,  decision-making based upon “common  sense,” 

predator-prey  evolutionary  games,  collective brain, etc.  Therefore, the proposed  model 

can  serve as a starting  point  for  a  unified  approach  to  model  behavior of intelligent 

systems. 

Appendix 

The  model of motor  dynamics  (see Eqs. (2), (7), (15), etc.)  has been presented in 

the  form of a  discrete  automation  since it was assumed that at any given  moment the 

system stays in one of the few  discrete  states while the transition between such states  was 

neglected. 

I n  this Appendix we will describe the complete physical scenario  which  includes 

both  discrete  (probabilistic)  and  continuous  (deterministic)  components of the  motor 

dynamics  thereby  implementing Eqs. (2), (7), (15), etc. by “physical  hardware,”  i.e., 

without  random  number  generators.  The  approach is based upon the non-Lipschitz 
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tlyn~llllics ! ~ ) . I O l  which introduces  discreteness and randomness i n  ;I natural  n’ay. i.c., 

withoul man made  devices. 

Let us consider  a  non-dimensional  motion of a  particle of unit mass driven by a 

non-Lipschitz force: 

m2I3 
sec5J3 

v = vv”.’sin at, v = const, [ v]  = - (A 1) 

x =  v (A2) 

where v and x are the particle velocity and  position, respectively. 

Subject to the zero initial  condition 

v= 0 at t = O  

equation (Al )  has a  singular  solution 

v= 0 

and ;I regular solution 

These  two  solutions  coexist at t = 0, and this is possible because at this point the 

Lipschitz  condition fails: 

Since 
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the singular  solution (Ad) is unstable, and the particlc  departs t'ronl rest following  the 

solution (A5).  This solution has two (positive and negative)  branches  (since the power in 

(A5) includes the square  root),  and  each branch can be chosen with the  probability  p  and 

( I -p) respectively. It should be noticed that as a result of (A5), the motion of the particle 

can be initiated  by  infinitesimal  disturbances  (such  motion  never can  occur  when  the 

Lipschitz  condition  holds:  an  infinitesimal  initial  disturbance  cannot  become  finite in 

finite time['."' ). 
Strictly  speaking,  the  solution  (A5)  is valid only in the time interval 

2n 
O I t I "  

w 

and  at t 5 2n / CL) it coincides with the singular  solution (A4) 

For t ) 2n / w equation  (A4)  becomes unstable,  and the motion  repeats  itself  to 

the  accuracy of the  sign in equation  (A5). 

Hence, the particle velocity u performs  oscillations with respect to its zero value 

in such a  way  that  the  positive  and  negative  branches of the solution  (A5)  alternate 

randomly  after  each  period  equal  to 2n / w . 

Turning to equation  (A2),  one  obtains  the  distance  between  two  adjacent 

equilibrium  position  of the particle: 

Thus, the equilibrium positions of the  particle  are 

,yo = 0, x ,  = +/2, x, = +h * h... 
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w h i k  thc posijlivc and negative signs ranclomly alternate with probabilities p and (1-p), 

rcspectively. 

Obviously, the particle performs an unrestricted random walk: after  each time 

period 

i t  changes its value on +h [see  equation (AlO)]. 

The probability density f(x,t)  is  governed by the  following  difference  equation: 

f ( ~ ,  t + z)= pf(x - h, t )+( l -  p ) f ( x  + h, t )  tA12) 

which  represents a discrete version of the Fokker-Planck  equation. 

while 
m j" f (x, t )  dx = 1 

Several  comments to the model (AI) and  its  solution have to be made. 

Firstly, the "viscous" force 
l / 3  F = - v u  (A 14) 

includes  static friction (see  Eq. A6) which actually causes failure of the Lipschitz 

condition.  These  type of forces are well-known in theory of visco-plasticity ' ' ' I .  It should 

be noticed that the  power l/3 can be replaced by any power of the type: 

2n-  1 
2n+1  

k = -  , n = 1,2, ... etc 

with the same final result (A12). In particular, by selecting large n, one  can  make k close 

to I ,  so that the force  (A13) will be almost identical to its classical counterpart 

F,. = "VV (A 16) 

everywhere  excluding  a  small neighborhood of  the equilibrium point u = 0, while at 

this point 
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Secondly, without the failure of the Lipschitz  condition (Ab),  the solution to Eq. 

(A 1 )  could not approach its equilibrium v = 0 in finite time, and therefore, the paradigm 

leading to random  walk  (A12)  would not be possible. 

Finally,  we  have  to  discuss  the  infinitesimal  disturbances  mentioned in connection 

with  the  instability of the  solutions  (A5) at v = 0. Actually the original  equation  should 

be  written in the  form: . 
v =  sinat + E ,  E -+O 

where E represents  infinitesimal  disturbances.  It  should be emphasized  that  this  process 

is not driving  the  solution of Eq.  (A18): it only  triggers  the mechanism of instability 

which  controls  the  energy  supply  via the harmonic  oscillations sinmt . As follows  from 

Eq.  (A18),  the  disturbance E can be ignored  when v = 0 or  when v # O ,  but  the 

equation  is  stable, i.e. v = nu, 2nm, .... etc. However, it becomes  significant  during  the 

instants  of  instability  when v = 0 at t = 0, n 12m etc.  Indeed,  at  these  instants,  the 

solution to Eq.  (A18)  has a choice to be  positive  or  negative if E = 0,  (see Eq.  (A5)). 

However,  with E f 0,  

. 

sign v = sign E at t = 0, 7r I 20 ,... etc .... (A  19) 

i.e., the  sign of E at the  critical  instances of time  (A19) uniquely defines  the  evolution of 

the  dynamical  system  (A18).  Thus,  the  dynamical  system  (A18)  creates a binary  time 

series  which, in turn,  generates a random-walk-paradigm  [equation (A2)]. 

We will start with the case when 

1 
E = &,Sin -, 

2, 
E" 4 0 .  



unbounded frequency at v + 0. and  therefore, with equal probability i t  can be positive  or 

ncgativc a t  v -+ 0 i f  the precision of its representation is finite. 

Therefore, the  statistical  signature of the random  walk  described by Eqs. (A18), 

(A2),  and (A20) is expressed by the solution to equation (A12) and  equation  (A 13) at 

p= 1/2. With the initial conditions 

f(0,O) = 1, f(x,O) = O  if x # 0 

i t  is a  symmetric unrestricted random walk: 

Here the binomial  coefficient  should be interpreted as 0 whenever m is not an integer in 

the  interval [0,n] and IZ is the total number of steps. 
1 

One  can verify (by substitution) that the function LL) = Sirz- is  the solution to the 
V 

following  differential  equation: 

-+,JG=~ d m  1 or k Z - 4 ~ 3  
clv I)- 2)- 

(A22) 

ci>=-, 1 - 0 -  v J- 

2)- 

Both equations in (A22) suffer from  a failure of the Lipschitz conditions at v = 0.  

Thus,  the  probabilities  described by equation (A121 are  simulated  by  the 

dynamical  system (A22) and (A2) without an explicit  source of stochasticity  (while the 

'hidden'  source of stochasticity is in finite  precision of the functions  representation 

combined with the non-Lipschitz instability). 

Combining  several  dynamical  systems of the type (A22) and (A2) and  applying 

an appropriate  change of variables,  one  can  simulate  a  probabilistic  Turing  machine 

which  transfers  one  state to another with a  prescribed transitional probability. Non- 
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Markovian  properties of such  a  machine  can be incorporated by introducing  time-delay 

terms in equation (A2): 

However,  there  is a more  interesting way to enhance the dynamical  complexity of 

the system (A22) and (A2). Indeed,  let us turn to Eq. (A23) and  introduce a feedback 

from Eq. (A2) to  Eq. (A22) as follows: 

E = E , ( W - x )  (A241 

Then  the  number of negative  (positive)  signs in the  string (25) will prevail if 

x ) 0 ( x  ( 0) since  the  effective  'zero-crossing  line  moves  down  (up)  away  from  the 

respectively.  Hence,  the  dynamical  system (A221, and (A2) simulates a restricted 

random  walk with  the  boundaries (A25) implemented by the  dynamical  feedback (A24), 

while  the  probability 

p(signs)O) = { 0 i f x  2 y,, 
1 if x I ymin 

For the  sake of qualitative  discussion,  assume  that p change  linearly  between x = ymin  and 

Then the  simulated  restricted  random walk is  a  solution to equations (A12) and A27). An 

alternative  approach  to  representation of the  bias E in Eq. (A 18) was  described in ''I 

where E was  sampled  from the chaotic time series of the  logistic  map. 
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